Analysis of the methods and means to investigation transient electromagnetic processes in long power lines

Authors

  • V. Levoniuk Lviv National Agrarian University

DOI:

https://doi.org/10.31734/agroengineering2020.24.101

Keywords:

transient electromagnetic processes, long power line, equation solving methods, differential line equations, telegraph equations, mathematical model

Abstract

The paper analyzes scientific publications related to the study of transient electromagnetic processes in long power lines. The analysis has shown that there are currently no common approaches to the study of these processes, but instead there are a large number of methods and means for their reproduction. The advantage of field approaches over wheeled ones in the mathematical modeling of the mentioned processes is substantiated. Possible ways to obtain differential equations of a long line are presented, in particular on the basis electromagnetic field theory and variable approaches, using the modified Hamilton – Ostrogradsky principle.

The work supplies analysis of the methods and means of solving the differential equations of a long power line and generalizes solutions of those equations in the form of mathematical formulas by the following methods: D'Alembert, Fourier, Cauchy, Laplace transform, Fourier transforms, as well as methods of discretization partial differential equations. The paper deals with the study of transient electromagnetic processes in long power lines by almost each of those methods. The others, less used approaches, are also considered, in particular: diakoptic, spectral (frequency), «wandering waves» as well as existing software for analyzing the mentioned processes. The analysis shows that nowadays, the majority of studies of transient electromagnetic processes are carried out using ready-made computer programs that are designed for engineering calculations rather than scientific ones. The main problems concerning creating new and improving the existing software systems for the analysis of transient electromagnetic processes are revealed. The prospects for further research are indicated.

References

Buslova, N. V., Vinoslavskii, V. N., Denisenko, H. N., & Perkhach, V. S. (1986). Elektricheskie sistemy i seti. Kiev: Vischa shk.

Venikov, V. A. (1972). Elektricheskie sistemy. Peredacha energii peremennym i postoyannym tokom vysokogo napryazheniya. Moskva: Vyish. shk.

Lobodzinsky, V. Yu. (2019). Transition processes in three-phase circles with distributed parameters and electromagnetic connections represented by multipoles. National technical university of Ukraine «Kyiv politechnical in-stitute name of Ihor Sikorskoho», Kyiv.

Novikova, O. I. (1998). Analysis of electric circles with distributed parameters at small nonlinearities of elements. Institute of Electrodynamics, Kyiv.

Fomina, T. Yu. (2014). Development of an algorithm for calculation of transients of complex regulated UES. National MEI Research University, Moscow.

Delkhosh, M. (2012). A Method for Solving the Special Type of Cauchy-Euler Differential Equations and its Algorithms in MATLAB. Delkhosh JOS, 2 (3), 131 – 135.

Jung-Chien, Li. (1995). Transient analysis of three-phase transmission lines with initial voltage and current distributions. Electric Power Systems Research, 35 (3), 177 – 186.

Smolarczyk, A., & Chmielak, W. (2016). The PSCAD / EMTDC program as a convenient tool for modeling overhead lines. Work of the electrical en-gineering institute, 272, 31 – 48.

Ravlyk, O. M., & Stetsyk, V. Ya. (2016). Modeliuvannia komutatsiinykh protsesiv linii nadvysokoi napruhy 750 kV. Visnyk Natsionalnoho univer-sytetu “Lvivska politekhnika”. Elektroenerhetychni ta elektromekhanichni sys-temy. 840, 102 – 106.

Lysiak, H. M., Ravlyk, O. M., & Seheda, M. S. (2003). Analiz avariinykh protsesiv v elektrychnii merezhi 750 kV. Tekhnichna elektrodynamika. 1, 49 – 52.

Shimoni, K. (1964). Teoreticheskaya elektrotekhnika. Moskva: Mir.

Bessonov, L. A. (1973). Teoreticheskie osnovyi elektrotekhniki. Moskva: Vyissh. shk.

Chaban, A. V. (2015). Pryntsyp Hamiltona – Ostrohradskoho v elektromekhanichnykh systemakh. Lviv: Vyd-vo Tarasa Soroky.

Chaban, A. V., Levoniuk, V. R., Drobot, I. M., & Herman, A. F. (2016). Matematychne modeliuvannia perekhidnykh protsesiv u linii Lekhera v stani nerobochoho khodu. Elektrotekhnika i Elektromekhanika, 3, 30 – 35.

Perchach, V. S. (1986). Matematychni zadachi elektroenerhetyky. Lviv. Vyd-vo pry Lviv. derzh. u-ti vyd. obyednannia “Vyshcha shkola”.

Dommel H. W. (1969). Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions On Power Apparatus And Systems. 388 – 399.

Kuznetsov, V. H., Tuhay, Yu. I., Shporliansky, O. H., & Kuchanskyi, V. V. (2011). Doslidzhennia rezonansnykh perenaprukh na ultraharmonikakh parnoi kratnosti na LEP 750 kV. Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy, 29, 122 – 127.

Vinesh, G., Vivek, K., Karan, M., Pankaj, P., & Ashish, C. (2005). Fault analysis on three phase system by auto reclosing mechanism. International Journal of Research in Engineering and Technology, 04(05), 292 – 298.

Sizhanov, N. V., Sizhanova, E. Yu., Petukhov, R. A., & Shevchenko, V. V. (2016). Modelirovaliie elektroperedachi Altai – Itatskai dliz issledovaniia rezhymov trekhfaznoho avtomaticheskoho povtornoho vkliucheniia. VESTNIK IrHTU, 2 (109), 86 – 93.

Anho, A. (1967). Matematyka dlia elektro- I radioinzhenerov. Moskva: Nauka.

Su´arez, P. U. (2013). An introduction to the Split Step Fourier Method using MATLAB, pp. 1 – 14. Retrieved from https://www.researchgate.net/profile/Pablo_Suarez5/publication/281441538_An_introduction_to_the_Split_Step_Fourier_Method_using_MATLAB/links/55e71b8f08aeb6516262d8aa/An-introduction-to-the-Split-Step-Fourier-Method-using-MATLAB.pdf?origin=publication_detail (Last ac-cessed: 06.04.2020).

Kirilenko, O. V., Seheda, M. S., Butkevych, O. F., & Mazur, T. A. (2010). Matematychne modeliuvannia v elektroenerhetytsi: pidruchnyk. Lviv: Vyd-vo NU “Lvivska politekhnika”.

Czaban, A., Lis, M., Sosnowski, J., & Lewoniuk, W. (2016). Model matematyczny dwuprzewej linii zasilania z wyko¬rzystaniem modyfikowanej zasady Hamiltona. Maszyny Elektryczne – Zeszyty Problemowe, 1, 31 – 36.

Czaban, A., Lis, M., Chrzan, M., Szafraniec, A., & Levoniuk, V. (2018). Mathematical modelling of transient processes in power supply grid with distributed parameters. Przeglad elektrotechniczny, 1, 17 – 20.

Levoniuk, V. R. (2019). Metody ta zasoby analizu komutatsiinykh perekhidnykh protsesiv u liniiakh elektroperedachi nadvysokoi napruhy na osnovi variatsiinykh pidkhodiv: dys. … kand. tekhn. nauk. Lviv.

Hesse, M. H. (1963). Electromagnetic and electrostatic transmission-line parameters by digital computer. IEEE Trans. Power App. Syst, 82, 282 – 290.

Nesterov, R. E., Kanev, F. Yu., & Makenova, N. A. (2015). Matematich-eskoie modelirovanie linii elektroperedach I system zazemleniia. Sovremen-nyie probliemy nauki i obrazovaniia., 1. URL https://www.science-education.ru /pdf/2015/1/1680.pdf (Last accessed: 6.04.2020).

Stakhiv, P., Rendziniak, S., & Korud, A. (2005). Zastosuvannia diakop-tychnoho pidkhodu do rozrakhunku perekhidnykh protsesiv u skladnykh elektrychnykh kolakh z dovhymy liniiamy. Teoretychna elektrotekhnika, 58, 39 – 43.

Published

2023-04-07

How to Cite

Levoniuk В. (2023). Analysis of the methods and means to investigation transient electromagnetic processes in long power lines. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (24), 101–108. https://doi.org/10.31734/agroengineering2020.24.101

Issue

Section

ELECTROTECHNICAL COMPLEXES AND SYSTEMS IN AGRO INDUSTRIAL PRODUCTION