Use of simulation modelling in decision support information systems
DOI:
https://doi.org/10.31734/agroengineering2024.28.191Keywords:
simulation modeling, information system, harvesting, time fund, technological system, project management, efficiencyAbstract
The prerequisites for utilizing information technology (IT) in developing information and analytical tools to support decision-making in agro-industrial complex development projects are outlined. An analysis of current approaches to studying technological systems in a changing external environment, particularly through modeling methods and IT, has been conducted. The components of technological system projects and the impact of the project environment are identified. The factors contributing to the variability of external conditions affecting the technological processes of crop harvesting are discussed, along with the rationale for employing statistical simulation modeling methods. The importance of creating a set of models that accurately represent the components of the technological system for harvesting cultivated plants is emphasized. Key components of the external project environment that contribute to the probabilistic nature of the time frame required for task execution within the technological system are highlighted. Additionally, elements of the methodology for accounting for the influence of agrometeorological conditions on the time frame for work execution during the autumn months in sugar beet harvesting projects are illustrated through a statistical simulation model. Simulations have been performed, and their results are summarized. The application of correlation-regression analysis methods reveals patterns in the variations of the naturally allowed time frame compared to the planned start time for crop harvesting and establishes correlation dependencies. The relationship between the duration of the naturally allowed time frame for beet-harvesting tasks and the statistical characteristics of this duration for various calendar start dates has been determined. Furthermore, the differential functions of the distribution of the naturally allowed time frame for beet-harvesting work during the autumn season have been established.
References
Berezovetskyi, S. A. (2017). Obhruntuvannia parametriv tekhnichnoho osnashchennia tekhnolohichnykh system zbyrannia ozymoho ripaku: avtoref. dys. ... k-ta tekhn. nauk: spets.: 05.05.11. Lviv, 21.
Bertalanffy, L., Hofkirchner, W., Rousseau, D. (2015). General system theory. Foundations, development, applications, 1st. ed., George Braziller Inc, New York, NY.
Biudzhet 2024 – yaku derzhavnu pidtrymku zaklaly dlia ahrosektoru? Hariacha ahropolityka.. (2023). URL: https://agropolit.com/spetsproekty/1025-byudjet-2024--yaku-derjavnu-pidtrimku-zaklali-dlya-agrosektoru (Accessed June 10, 2024)
Dnes, V. I. (2015). Obhruntuvannia parametriv zernozbyralno-transportnykh kompleksiv dlia silskohospodarskykh tovarovyrobnykiv: avtoref. dys. k-ta tekhn. nauk: spets.: 05.05.11. Hlevakha, 20.
Dooley, K. (2002). Simulation research methods, Companion to Organizations, Joel Baum (ed.), London: Blackwell, 829–848.
Lub, P. M. (2006). Obhruntuvannia parametriv kompleksu gruntodobrovnykh mashyn silskohospodarskoho pidpryyemstva: avtoref. dys. ... kand. tekhn. nauk: spets.: 05.05.11. Lviv, 23.
Lub, P., Berezovetsky, S., Chubyk, R., Ptashnyk, V. (2021). The research of technological risk of the harvesting projects on the basis of simulation modelling. Proceedings of 16th International Conference on Computer Sciences and Information Technologies, CSIT2021, IEEE, Lviv, 359–363. doi: 10.1109/CSIT52700.2021.9648701.
Lub, P., Berezovetsky, S., Padyuka, R., Chubyk, R. (2022). Information-analytical support of project management processes with the use of simulation modeling methods. CEUR Workshop Proceedings, 3109, 53-57.
Polioyi, A. M., Bozhko, L.Yu., Volvach,, O.V. (2012). Osnovy ahrometeorolohii: pidruchnyk. Odeskyi derzhavnyi ekolohichnyi universytet. Odesa: Vydavnytstvo TES, 250.
Pukas, V. L. (2020). Obhruntuvannia parametriv tekhnichnoho zabezpechennia tekhnolohichnoho protsesu zbyrannia tsukrovykh buriakiv: avtoref. dys. ... kand. tekhn. nauk.: 05.05.11. Lviv, 22.
Rubinstein, R. Y. , Kroese, D. P. (2016). Simulation and the Monte Carlo method, 3-nd ed., Wiley, New Jersey. doi: 10.1002/9781118631980.
Schildt. H. (2003). C#: The Complete Reference, Osborne: The McGraw-Hill Companies.
Sharybura, A.O. (2010). Upravlinnia zmistom ta chasom u proiektakh z tekhnolohichnym ryzykom (stosovno zbyrannia lionu-dovhuntsia): avtoref. dys. ... kand. tekhn. nauk: spets.: 05.13.22. Lviv, 20.
Spichak, V. S. (2010). Upravlinnia vyrobnycho-tekhnolohichnym ryzykom u proiektakh zbyrannia tsukrovykh buriakiv: avtoref. dys. ... kand. tekhn. nauk: spets.: 05.13.22. Lviv, 23.
Tryhuba, А., Boyarchuk, V., Tryhuba, I., et al. (2020). Method and Software of Planning of the Substantial Risks in the Projects of Production of raw Material for Biofuel, in: CEUR Workshop Proceedings. Published in ITPM.
Tryhuba, А., Padyuka, R., Tymochko, V., Lub, P. (2022). Mathematical model for forecasting product losses in crop production projects. CEUR Workshop Proceedings, 3109, 25-31.
Тryhuba, А., Boyarchuk, V., Tryhuba, I., et al. (2021). Study of the impact of the volume of investments in agrarian projects on the risk of their value (ITPM-2021). CEUR Workshop Proceedings, 2851.