Assessment of the efficiency and optimization of the modes of pre-sowing electrical stimulation of sunflower seeds

Authors

  • S. Kovalyshyn Lviv National Environmental University
  • B. Nester Lviv National Environmental University
  • V. Ptashnyk Lviv National Environmental University
  • O. Shvets Lviv National Environmental University
  • P. Kielbasa University of Agriculture In Krakow
  • A. Miernik University of Agriculture In Krakow
  • Ya. Salo Lviv Department of Ukrainian SRIFTM named after L.Pohorilyi

DOI:

https://doi.org/10.31734/agroengineering2022.26.085

Keywords:

sunflower seeds, electrical stimulation, electric treatment modes, single photons, emission, germination energy, laboratory germination

Abstract

The article is devoted to improvement of the sowing qualities of sunflower seed material by its pre-sowing electrical stimulation in the electric field of the corona discharge and optimization of the modes of its implementation.

To reveal the cause-and-effect connection between the pre-sowing seed treatment modes and its sowing and yield qualities, to optimize processing parameters and to expand knowledge about the mechanism of biological processes in stimulated seeds, it is proposed to use the method of time-correlated counting of ultra-low emission of TCSPC photons emitted by sunflower seeds after processing in the electric field of the corona discharge.

As a result of the research, it is revealed that absorption and transformation of the energy of the external electric field during the electrical stimulation of seeds occurs non-linearly. The main transformations take place during the first 15-20 seconds, regardless of the electric field intensity.

It was found that pre-sowing electric stimulation of sunflower seeds led to improvement in its germination energy. In all studied processing options, this indicator exceeded the control. The highest values of germination energy were observed during pre-sowing electrical stimulation with voltage E = 2.0 kV/cm and exposure of t = 20...30 s. Under such parameters of electrical treatment, the energy of germination was 90...92 %, which is 16...18 % higher than the control indicators recorded at the level of 74 %.

It is also found that pre-sowing treatment of sunflower seeds has a positive effect on its laboratory germination. The largest increase to the control, i.e. 8%, was observed under the treatment mode of E = 2,0 kV/cm and exposure of t = 25 sec. Under these conditions, the laboratory similarity reached 96 % against 88% in the control. Laboratory similarity also increased with the treatment mode E = 2,0 kV/cm and exposures of t = 20 sec and t = 30 sec. In that case, it was 94 %, which was 6 % higher than the control version.

The obtained results of pre-sowing electrical stimulation of sunflower seeds confirm that such technological measure should be used in the technology of post-harvest preparation in order to obtain high-quality seed material with increased sowing properties.

References

Boussetta, N., Turk, M., Taeye, C. De., Larondelle, Y., Lanoisellé, J. L., & Vorobiev, E. (2013). Effect of high voltage electrical discharges, heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake. Industrial Crops and Products, 49, 690-696.

Kiełbasa, P., Dróżdż, T., Nawara, P., & Dróżdż, M. (2017). Wykorzystanie emisji biofotonów do parametryzacji jakościowej produktów spożywczych. Przegląd Elektrotechniczny, 93 (1), 153-156.

Kovalyshyn, S., Nester, B., Ptashnyk, V., Shvets, O., Kelbasa, P., Mernik, A., & Salo, Y. (2021). Doslidzhennia vzaiemozviazku mizh emisiieiu fotoniv elektrostymuliovanoho nasinnia ozymoho ripaku ta yoho posivnymy yakostiamy. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu. Ahroinzhenerni doslidzhennia, 25, 107-111.

Kovalyshyn, S., Ptashnyk, V., Shvets, O., & Nester, B. (2021). Tekhnolohiia peredposivnoi obrobky nasinnia ripaku elektrychnym polem vysokoi napruzhenosti. In Teoriia i praktyka rozvytku ahropromyslovoho kompleksu ta silskykh terytorii: Materialy XXII Mizhnar. nauk.-prakt. forumu, 5-7 zhovt. 2021 r. (T. 2, pp. 77-81). Lviv: NNVK «ATB».

Kovalyshyn, S., Ptashnyk, V., Shvets, O., Nester, B., Klymchuk, M., & Salo, Y. (2021). Efektyvnist peredposivnoi elektrostymuliatsii nasinnia ozymoho ripaku. In Naukovo-tekhnichni zasady rozroblennia, vyprobuvannia ta prohnozuvannia silskohospodarskoi tekhniky i tekhnolohii: Materialy XXI Mizhnarodnoi naukovoi konferentsii (pp. 85-191). Doslidnytske UKRNDIPVT im. L. Pohoriloho.

Lynikiene, S., Pozeliene, A., & Rutkauskas, G. (2006). Influence of corona discharge field on seed viability and dynamics of germination. Int. Agrophys., 20, 195-200.

Mahajan, T., & Pandey, O. (2014). Effect of electric field (at different temperatures) on germination of chickpea seed. African Journal of Biotechnology, 13(1), 61-67.

Oziembłowski, M., Dróżdż, M., Kiełbasa, P., Dróżdż, T., Gąsiorski, A., Nawara, P., & Tabor, S. (2017). Ultra słaba luminescencja (USL) jako potencjalna metoda oceny jakości żywności tradycyjnej. Przegląd Elektrotechniczny, 93 (12), 131-135.

Puértolas, E., & de Marañón, I. M. (2015). Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chemistry, 167, 497-502.

Sarkis, J., Boussetta, N., Tessaro, I., Marczak, L., & Vorobiev, E. (2015). Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. Journal of Food Engineering, 153, 20-27.

Stašelis, A., Duchovskis, P., & Brazaityte, A. (2004). Impact of electromagnetic fields on morphogenesis and physiological indices of tomato. Int. Agrophys., 18(3), 277-283.

Sumorek, A., & Pietrzyk, W. (1999). Influence of electric field on the speed of convective removal of water from wheat grain. Int. Agrophys, 13(4), 509-513.

Wang, J., Song, H., Song, Z., Lu, Y., Yinfa Yan, Y., & Li, F. (2020). Effect of positive and negative corona discharge field on vigor of millet seeds. Digital object identifier, 8, 50268-50275.

Zepeda, R., Hernandez, C., Suazo, F., Dominguez, A., Cruz, A., & Martínez, E. (2011). Physical characteristics of maize grain and tortilla exposed to electromagnetic field. Int. Agrophys., 25(4), 389-393.

Zepeda-Bautista, R., Hernández-Aguilar, C., Domínguez-Pacheco, A., Cruz-Orea, A., Godina-Nava, J.J.J., & Martínez-Ortíz, E. (2010). Electromagnetic field and seed vigour of corn hybrids. Int. Agrophys., 24(3), 329-332.

Zongming Li, Yang Fan, Jun Xi. (2019). Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry, 277, 246-260.

Published

2023-03-21

How to Cite

Kovalyshyn С. ., Nester Б. ., Ptashnyk В. ., Shvets О. ., Kielbasa П. ., Miernik А. ., & Salo Я. . (2023). Assessment of the efficiency and optimization of the modes of pre-sowing electrical stimulation of sunflower seeds. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (26), 85–93. https://doi.org/10.31734/agroengineering2022.26.085

Issue

Section

ELECTROTECHNICAL COMPLEXES AND SYSTEMS IN AGRO INDUSTRIAL PRODUCTION

Most read articles by the same author(s)