Vibration mobile devices in robotic systems
DOI:
https://doi.org/10.31734/agroengineering2022.26.022Keywords:
vibration, transportation, oscillations, industrial works, automation, manipulator, vibration drive, disturbing forceAbstract
Increase of the production efficiency and production output, improvement of its quality while reducing labor costs, upgrade of the forms of organization and production management are the basic elements of mechanical engineering development. This is ensured by improvement of the existing and introduction of new types of equipment, technological processes and means of their mechanization and automation, creation of new technological complexes where all these issues are interconnected and comprehensively solved.
Vehicles ensure the continuity and rhythm of work of all structural units of flow production, starting from warehouse operations, supply of a technological object, the work process of processing to the output of finished products. The use of machines with remote and automatic control, in particular, industrial robots in flexible automated complexes and automation of assembly processes in various industries is promising in this matter.
Equipping the manipulator with additional coordinate degrees of mobility (from one to three) increases its working area, improves versatility, and expands technological capabilities. The development of industrial robots and the growth of their functional capabilities creates new and improves the known mechanical and control systems, expands the number of their varieties. However, this perfection of automated equipment gives rise to new technical tasks related to the simplification of structural elements of robots and systems that serve their work in production.
During the performance of some technological operations, for example, in radio electronics, there is a need for devices that can be used to quickly carry out precise, small, manipulative movements of low-mass products. However, in such conditions, they are subject to increased requirements for speed and accuracy. In this case, it would be rational to use micromanipulators installed on mobile vibrating devices (self-propelled platforms), which have three degrees of mobility: independent rectilinear movements in two mutually perpendicular directions and rotation around an axis. Such self-propelled systems make it possible to move along a curvilinear trajectory and reverse
References
Blekhman, I. I. (1994). Vibratsionnaya mehanika. Moskva: Fizmatlit.
Bliakherov, I. S., Varyash, G. M., Ivanov, A. A., Klueov, Y. A., Komarov, H. V., Matkyn, Yu. L. … Klusov, I. A. (Red.). (1990). Avtomaticheskaya zagruzka tehnologicheskih mashin: Spravochnik. Moskva: Mashinostroenie.
Buchynskyi, M. Ya., Horyk, O. V., Cherniavskyi, A. M., & Yakhin, S. V. (2017). Osnovy tvorennia mashyn. Kharkiv: NTMT.
Goncharevich I. F. (1986). Vibratsiya – nestandartnyiy put: vibratsiya v prirode i tehnike. Moskva: Nauka.
Koruniak, P. S., Kernytskyi, I. S., Nishchenko, I. I., & Snitynskyі, V. V. (Red.). (2021). Avtomatyzovane vibratsiine manipuliuvannia vyrobamy ta vibromanipuliatory. Lviv: SPOLOM.
Koruniak, P. S., Nishchenko, I. I., & Kernytskyi, I. S. (2017). Transportuvalni mashyny. Osnovy konstruiuvannia ta rozrakhunku vibratsiinykh transportuvalnykh mashyn. Lviv: SPOLOM.
Koruniak, P. S., & Sheremeta, R. B. (2019). Patent na korysnu model 132128 Ukraina, MPK V25J 5/00. Kyiv.
Koruniak, P. S., Sheremeta, R. B., & Malyk, I. M. (2017). Patent na korysnu model 121455 Ukraina, MPK B65J 5/100. Kyiv.
Kostyuk, V. I., Gavrish, A. P., Yampolskiy, L. S., & Karlov, A. G. (1985). Promyishlennyie robotyi: Konstruirovanie, upravlenie, ekspluatatsiya. Kiev: Vischa shk.
Kozyirev, Yu. G. (1988). Promyishlennyie robotyi: Spravochnik. Moskva: Mashinostroenie.
Lavendela, E. E. (Red.). (1981). Vibratsionnyie protsesyi i mashinyi. V. Cholomey, V. N. (Red.). Vibratsii v tehnike: Spravochnik. (T. 4). Moskva: Mashinostroenie.
Malashchenko, V. O., Koruniak, P. S., & Nishchenko, I. I. (2017). Vibratsiine peresuvannia po shorstkii poverkhni. Pidiomno-transportna tekhnika, № 3, 33-40.
Povydailo, V. O. (2004). Vibratsiini protsesy ta obladnannia. Lviv: Vyd-vo Natsionalnoho universytetu „Lvivska politekhnika”.
Shaumyan G. A. (1973). Kompleksnaya avtomatizatsiya proizvodstvennyih protsessov. Moskva: Mashinostroenie.
Spinu, G. A. (1991). Promyishlennyie robotyi: Konstruirovanie i primenenie. Kiev: Vischa shk.
Starzhinskiy, V. M. (1980). Teoreticheskaya mekhanika. Moskva: Nauka.
Stotsko, Z. A. (2013). Modeliuvannia tekhnolohichnykh system: Navch. posib. (2-he vyd.). Lviv: Vyd-vo Lviv. politekhniky.
Vasilenko, N. V., Nikitin, K. D., Ponomarev, V. P., & Smolin, A. Yu. (1993). Osnovyi robototehniki. Moskva: Radio i svyaz.
Yampolskiy, L. S., Yahimovich, V. A., Vaysman, E. G., Deremchuk, B. A., Kozachenko, L. V. & Yampolskіу, L. S. (Red.). (1984). Promyishlennaya robototehnika. Kiev: Tehnika.