Study of voltage deviation from the nominal value in the electrical supply systems of the enterprise
Keywords:
power supply, model, voltage, maximum allowable value of voltage deviationAbstract
The quality of electricity refers to how closely the actual values of electrical parameters align with the values specified in GOST 13109-97. This study focuses on voltage deviations, which have normal values of +5% or -5% and limit values of +10% or -10%, according to GOST 13109-97. The power of the power source influences voltage fluctuations in the network, the power lost during transmission, and the power consumed by electrical equipment. Asynchronous motors are among the most common consumers of electricity, and their power consumption is proportional to the square of the voltage. This means that losses are significantly higher when voltage decreases. A drop in voltage leads to a decrease in the motor's rotational speed, which increases slippage. Additionally, current increases, efficiency declines, and insulation deteriorates faster. Lower voltage also negatively impacts the motor's starting torque and mechanical characteristics.
In electrical equipment, voltage losses result in reduced power, increased time for technical and production processes, and ultimately a decline in productivity and product quality. Furthermore, a decrease in voltage adversely affects lighting, as the luminous flux is directly related to voltage levels. While an increase in voltage enhances lamp efficiency, it can also shorten the lamp's service life.
The efficiency of converting electrical energy into other forms is partially influenced by the quality of the electricity itself. Research on electrical networks, power losses, oscillatory processes, and voltage levels continues to be relevant. Modern research methods frequently employ modeling techniques.
This work addresses significant issues associated with the operation of the company's power grid. Advances in
research and analytical methods have led to impressive results across various fields. In particular, MATLAB/Simulink software facilitates the analysis of power network operating parameters under different conditions.
The article presents a model of the company’s power supply system constructed in the MATLAB/Simulink environment. A study of the power supply system's operation was conducted using this model. The simulation covered load variations from 0.2Sn to 1.2Sn. The investigation focused on voltage deviations at different circuit points from the nominal value across three scenarios: when the transformer’s transformation ratio is 10/0.4 kV, with values of 400 V, 400•1.025 V, and 400•1.05 V.
Analysis of the results indicates that the system has been designed satisfactorily, as most deviations remain within the maximum allowable limits. However, to achieve more precise compliance with the voltage level, voltage on the transformer can be adjusted by switching the winding, or alternatively, by increasing the cross-section of the power wire in the first line.
References
Chaban, A. V., Levoniuk, V. R., Drobot, I. M., & Herman, A. F. (2016). Matematychne modeliuvannia perekhidnykh protsesiv u linii Lekhera v stani nerobochoho khodu. Elektrotekhnika i elektromekhanika, 3, 30-35.
Chaban, A., & Levoniuk, V. (2017). Analiz neustalenykh elektromahnitnykh protsesiv u frahmenti elektroenerhetychnoi systemy na osnovi klasychnykh pidkhodiv do modeliuvannia. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: Ahroinzhenerni doslidzhennia, 21, 167-177.
Chaban, A., Fediv, Ye, Sivakova, O., & Drobot, I. (2022). Stabilizatsiia napruhy vuzla elektrychnoho navantazhennia za dopomohoiu dvooperatsiinykh tyrystoriv. Visnyk Lvivskoho natsionalnoho universytetu pryrodokorystuvannia: Ahroinzhenerni doslidzhennia, 26, 101-108.
Chaban, A., Lis, M., Szafraniec, A., & Levoniuk, V. (2022). An application of the Hamilton-Ostrogradsky principle to the modeling of an asymmetrically loaded three-phase power line. Energies, 15(21), 8255-8273. doi: 10.3390/en15218255.
Chaban, A., Lis, M., Szafraniec, A., & Levoniuk, V. (2022). Mathematical Modelling of Transient Processes in a Three Phase Electric Power System for a Single Phase Short-Circuit. Energies, 15(3), 1126-1143. doi: 10.3390/en15031126.
Chaban, A., Perzyński, T., Popenda, A., Figura, R., & Levoniuk, V. (2022). Mathematical Modeling of Transient Processes in the Susceptible Motion Transmission in a Ship Propulsion System Con-taining a Shaft Synchro-nous Generator. Energies, 15(9), 3266-3274.
Chaban, A., Popenda, A., Szafraniec, A., & Levoniuk, V. (2023). Including shield wires in the analysis of transient processes occurring in HVAC transmission lines. Energies, 16(23), 7870-7889. doi: 10.3390/en16237870.
Durniak, B. V., Chumakevych, V. O., Liakh, I. M., Yatsun, A. M. (2017). Osnovy elektropostachannia ahropromyslovoho kompleksu: Navch. posib. Lviv: Ukrainska akademiia drukarstva.
Halanov, V. P., & Halanov, V. V. (2001). Vlyianye kachestva elektroэnerhyy na uroven ee poter v setiakh. Elektrycheskye stantsyy, 63.
Hoholiuk, O. P. (2010). Doslidzhennia elektroperedachi v suchasnykh kompiuternykh seredovyshchakh. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 671, 24-31.
Hrechyn, D., & Drobot, I. (2023). Doslidzhennia vidkhylen napruhy u merezhi elektropostachannia pidpryiemstva pry ekspluatatsii elektroobladnannia. Visnyk Lvivskoho natsionalnoho universytetu pryrodokorystuvannia: ahroinzhenerni doslidzhennia, 27, 61-69.
Levoniuk, V. (2016). Porivnialnyi analiz matematychnykh modelei perekhidnykh elektromahnitnykh protsesiv v elementakh elektroenerhetychnykh system. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: Ahroinzhenerni doslidzhennia, 20, 155-161.
Liakh, V. V., Molchanov, V. M., Sudakova, Y. V., & Pavlychenko, Y. V. (2009). Kabelnaia linyia napriazheniem 330 kV – novyi etap razvytyia elektrycheskykh setei Ukrayny. Elektrycheskye sety y systemy, 3, 16-21.
Perzynski, T., Levoniuk, V., & Figura, R. (2023). Transient Electromagnetic Processes Analysis in High Voltage Transmission Lines during Two-Phase Short Circuits. Sensors, 1, 298. doi: 10.3390/s23010298.
Shcherba, A. A, & Lobodzynskyi, V. Iu. (2011). Matematicheskae modelirovanie elektromahnitnykh protsessov v trekhfaznoi kabelnoi lynyy elektroperedachy pry raznykh transpozitsiiakh ekranov odnofaznykh kabelei. Tekhnichna elektrodynamika. Tem. vyp. "Sylova elektronika ta enerhoefektyvnist", 2, 271-276.
Shesterenko, V. Ie. (2004). Systemy elektrospozhyvannia ta elektropostachannia promyslovykh pidpryiemstv: Pidruchnyk. Vinnytsia: Nova kn.
Vorotnytskyi, V. E., Zahorskyi, Ya. T., & Apriatkyn, V. N (2000). Raschet, normirovanie y snizhenie poter elektroenerhii v elektricheskikh setiakh. Elektricheskye stantsii, 5, 154.
Zolotarev, M. V., & Oboznyi, A. L. (2006). Novie otechestvennie razrabotki v oblasti silovykh kabelei. Visnyk NTU KhPI, 34, 129-132.
Zolotarev, V. V., Karpushenko, V. P., Naumenko, A. A., & Buzko, S. V. (2006). Matematycheskaia model elektricheskoi napriazhennosty izolirovannykh zhil silovykh kabelei. Fyzycheskye i kompiuternye tekhnolohii: Trudy 12 Mezhdunar. nauch.-tekhn. konf. (pp. 239-240). Kharkov: KhNPK “FED”.