Stands for car suspension research

Authors

  • O. Liashuk Ternopil Ivan Puluj National Technical University
  • I. Hevko Ternopil Ivan Puluj National Technical University
  • V. Hud Ternopil Ivan Puluj National Technical University
  • R. Khoroshun Ternopil Ivan Puluj National Technical University
  • B. Hevko Ternopil Ivan Puluj National Technical University
  • A. Matviishyn Ternopil Ivan Puluj National Technical University
  • M. Sipravska Ternopil Ivan Puluj National Technical University

DOI:

https://doi.org/10.31734/agroengineering2022.26.127

Keywords:

car, suspension, stand, static and dynamic load

Abstract

The article provides a description of the developed and manufactured equipment (а stand with a drive drum) for carrying out a research on car suspension under static and dynamic loads. In particular, the work analyzed constructive schemes and principles of operation of the stands with tape and with rotary table for researching characteristics of the car suspension. The characteristics have been patented as a useful model of Ukraine. Based on them, the constructive schemes were developed and а stand with a drive drum for researching the car suspension with experimental equipment for fixing the studied characteristics under static and dynamic loading was made. The essence of the stand with a drive drum is the possibility to carry out the research under the static load of the object under study (car suspension) and fixing the relevant data on the monitor of electronic dynamometer DE 0.5-0.5 by the installed sensor, as well as the possibility to rotate the wheels and suspension of the car from the drive drum with an obstacle from a personal computer through a frequency converter (Altivar 71) using the software Power Suite version 2.3.0, and visualizations of the accelerometer data in a personal computer. The developed stands for researching performance of the car suspension characteristics by using modern laboratory equipment enable determining the studied characteristics of the experimental objects in wide ranges with the fixing of these characteristics in personal computers. This is, in particular, the influence of the kinematic parameters of movement and longitudinal-angular oscillations of the sprung mass of vehicles with a nonlinear force characteristic of the suspension system on their controllability and others. The obtained results of experimental studies of car suspension by using developed and manufactured bench equipment can become the basis for creating a controlled suspension software product.

References

Artiushenko A., & Suiarkov O. (2013). Doslidzhennia vplyvu kharakterystyk pidvisky malohabarytnoho avtomobilia na khodovi yakosti ta yii modernizatsiiy. Visnyk NTU «KhPI», 31 (1004), 21-27.

Audi Technology Portal: Dynamic Ride Control. Retrieved from https://www.audi-technology-portal.de/en/chassis/suspension-controlsystems/dynamic-ride-control_en.

Bello, M. M., Babawuro, A. Y., & Fatai, S. (2015). Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences, 10 (23), 17327-17331.

Derbaremdiker, A. D., Musarskiy, R. A., Stepanov, I. O., & Yudkevich, M. A. (1985). Samonastraivayuschiysya amortizator s programmirovannoy dempfiruyuschey harakteristikoy. Avtomobilnaya promyishlennost, 1, 13-15.

Guiggiani, M. (2014). The science of vehicle dynamics. Dordrecht: Springer Netherlands.

Gysen, B. L. J., & Janssen, J. L. G. (2016). Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions on Vehicular Technology, 59 (3), 1156-1163.

Jazar, R. N. (2014). Vehicle dynamics. New York: Springer New York.

Jazar, R. N. (2008). Vehicle dynamics: theory and application. Boston: Springer US.

Liashuk, O., Khoroshun, R., Hevko, I., Klendiy, V., Martsias, O., & Sipravska, M. Рat. 148601 Ukraina: MPK G01N 17/00 (2021.01). № u202101835; zaiavl. 07.04.21; opubl. 26.08.21, Biul. № 34.

Liashuk, O., Khoroshun, R., Hevko, I., Pindus, Yu., Pindus, T., Navrotska, T. … Matviishyn, A. Рat. 150771 Ukraina: MPK G01N 3/00, F16D 65/00. № u202106434; zaiavl. 15.11.21; opubl. 13.04.22, Biul. № 15.

Mandryka, V. R., & Shlykova, V. H. (2013). Kerovanist i stiikist rukhu avtomobilia V klasu z systemoiu. Visnyk NTU «KhPI», 31 (1004), 60-65.

Martins, І., Esteves, J., Silva, F. P. da, & Verdelho, P. (2015). Electromagnetics hybrid activepassive vehicle suspension system. Lisbon: Technical University of Lisbon.

Moheyeldein, M. M., El-Tawwab, A. M. A., El-gwwad, K. A. A., & Salem, M. M. M. An analytical study of the performance indices of air spring suspensions over the passive suspension. Beni-Suef University Journal of Basic and Applied Sciences (to be published).

Motor Trend: 2014 Chevrolet Corvette Stingray Z51 First Test. Retrieved from https://www.motortrend.ca/en/news/2014-chevrolet-corvette-stingray-z51-firsttest/#2014-chevrolet-corvette-stingray-z51-suspension.

Pan, H., Sun, W., Jing, X., Gao, H., & Yao J. (2017). Adaptive tracking control for active suspension systems with non-ideal actuators. Journal of Sound and Vibration, 399, 2-20.

Pavlenko, V. M., & Kryvoruchko, O. O. (2014). Suchasnyi stan rozvytku aktyvnykh pidvisok lehkovykh avtomobiliv. Visnyk NTU «KhPI». Avtomobilebuduvannia, 9 (1052), 54-60.

Popp, K., & Schiehlen, W. (2010). Ground vehicle dynamics. Berlin; Heidelberg: Springer Berlin Heidelberg.

Popular Mechanics: 3 Technologies That Are Making Car Suspensions Smarter Than Ever. Retrieved from https://www.popularmechanics.com/cars/car-technology/a14665/why-car-suspensionsare-better-than-ever/.

Rosli, R., Mailah, M., & Priyandoko, G. (2014). Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control, 9(2), 120-127.

Sim, K., Lee, H., Yoon, J. W., Choi, C., & Hwang, S. H. (2017). Effectiveness evaluation of hydropneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors. Journal of Terramechanics, 69, 23-32.

Schramm, D., Hiller, M., & Bardini, R. (2014). Vehicle dynamics. Berlin; Heidelberg: Springer Berlin Heidelberg.

Shafie, M., Bellob, M., & Khan, R. M. (2015). Active Vehicle Suspension Control using Electro Hydraulic Actuator on Rough Road Terrain. Journal of Advanced Research in Applied Mechanics, 9(1), 15-30.

Taghavifar, H., & Mardani, A. (2016). Off-road vehicle dynamics. Cham: Springer International Publishing.

Published

2023-03-21

How to Cite

Liashuk О. ., Hevko І. ., Hud В. . ., Khoroshun Р. ., Hevko Б. ., Matviishyn А. ., & Sipravska М. . (2023). Stands for car suspension research. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (26), 127–133. https://doi.org/10.31734/agroengineering2022.26.127