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Rosinski K., Deliavskyi M., Famuliak Yu. Modeling of the stress state in thin isotropic plates

A method of calculating the stress state in thin isotropic rectangular arbitrarily loaded plates for various boundary
conditions has been developed.

Solution of the problem is reduced to solution of a differential equation of the fourth order in particular derivatives

VEviw =1, 1)
where V2 is Laplace’s differential operator; w — deflection of the plate; q — transverse load applied to the upper surface of
the plate and D is bending rigidity of the plate.

Solution of the equation (1) is presented in the form of a sum of its particular solution w, and the general solution
w, of corresponding uniform equation

w=w,+ w, 2)

General solution w, is presented as a sum of products of unknown coefficients R,,s, and shape functions
Wkpsv X1, X2 -

Wo X1,Xy = Wkpsv X1, X2t Rkpsv (3)

Coefficients R, are treated as degrees of freedom of the plate.

Similarly, a particular solution is given as a sum of products of force functions W, x,,x, and other unknown
coefficients.

Such approach allows to satisfy conditions at the edge and on the surface of the plate.

Boundary conditions are performed in the separate nodes at the plate edge (in each node two boundary conditions are
written). In each node on the plate surface only one condition is written.

A program which automatically generates and places nodes at the edge and on the surface of the plate has been developed.

The expression (3) is called a function of the plate deflection state. State functions of other static and kinematic quantities
are obtained from formula (3) by Automatic Differentiation.

Distributions of deflection, tangent displacements, moments and shearing forces are obtained on the whole area of the
plate.

In this paper, two variants of the plate are considered: symmetrical and nonsymmetrical one. A plate is considered
symmetrical if it satisfies the conditions of symmetry of the plate contour and boundary conditions also the conditions of
symmetry of the external load and mechanical properties. Although if one of them is not performed the plate is nonsymmetrical.

For a symmetrical plate, the results are presented in the form of plots built in the central and edge cross sections of the
plate. The results are compared with numerical ones obtained with the help of Package ABEQUS in the form of space plots.

It is shown that kinematic boundary conditions are performed exactly with analytical and numerical approaches. Instant
results are not coincided as statistical boundary ones.

For nonsymmetrical plates, the results are given in the form of contour plots on the whole area of the plate.
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Pocincoki K., JensBcbkuiit M., @amyasak 0. Mone/ioBaHHsI HANPY’KEHOT0 CTAHY B TOHKHX i30TPONMHUX

IJIMTAaX

P03po6neHo METOJ PO3paxyHKY HAIIPY>KEHOI'0 CTaHY B TOHKHX i3OTpOHHI/IX MPAMOKYTHUX I[OBiJ'H)HO 3aBaHTaXCHUX

IUTITaX AU PI3HUX KPailOBHX YMOB.

Po3B’s30K 3a1a4i 3B€/1€HO IO pO3B’A3Ky AUGEPEHIIaIbHOIO PIBHAHHS Y€TBEPTOrO NOPSIKY B UACTUHHUX MOX1THUX:

V2Viw =

g &)

ne V2 — mudepenuianbhuii oneparop Jlammaca; W — NPOTMH IUITH; ( — MONEPEYHE HABAHTAXKEHHS, NPUKIAIEHE JO

BEPXHBOI CTOPOHHM IUIUTH; D — KOPCTKICTh IUINTH Ha 3TUH.

Po3B’s130k piBHAHHA (1) IpeAcTaBIeHO Y BUINIAL CyMH HOro 4acTKOBOIO PO3B’A3Ky W, 1 3arajbHOro po3B’si3Ky W,

Bi/ITIOBITHOTO OMY OJTHOPITHOTO PiBHSHHS:

w=w,+ w, . (2)
3araabHUH PO3B’A30K IIPEICTABICHO Y BUIIIANI CyMH JIOOYTKiB KOOPAMHATHUX QYHKUIH Wiy, X;,X, Ha HeBimoMi

HapamMeTpy Ry, HOTPAKTOBAHI SK CTYIEHI CBOOOM IIUTH:

W X1, X = Wkpsv X1, X2 * Rkpsv- (3)

IToni6HO 4YacTKOBUI pO3B’SA30K IOJAHO SIK CyMy J00yTKiB cuioBux ¢yHKuin W, xq,x,

KoeilieHTH.

Ha 1HII HEB1JIOMI

Taxwii mixix 103BOJIsIE BAKOHYBATH YMOBH Ha Kparo 1 Ha MOBEPXHI TUTUTH.
KpaiioBi YMOBH 33/I0BOJIBHSIOTHCS B OKPEMHUX BY3JIaX Ha Kparo IUIMTH (B KO)KHOMY BY3JIi 3alMCaHO /B yMOBH). B

KO>KHOMY BY3JIi HA TOBEPXHI TUTUTH 3aIICYETHCS OTHA YMOBA.

Po3pobiiena nporpama, sika aBTOMAaTHYHO YTBOPIOE 1 PO3MIIILY€E BY3/IM Ha Kparo i Ha MOBEPXHi IUIUTH.

Bupas (3) Ha3BaHO (QyYHKII€IO CTaHy NPOTHHY MMTH. DYHKINT CTaHy IHIIMX CTATUYHUX 1 KIHEMAaTHUHHX BEITHUUH
oTpumaHo 3 opmynu (3) 3a JOIOMOI0I0 aBTOMAaTUYHOTO JH(epeHIiFOBaHHS.

OTpuMaHO PO3KIIAIN MPOTHHY, JOTHYHHUX MIEPEMIllleHb, MOMEHTIB 1 MOTIEPEYHUX CHII B 00 €MI TIUTH.

Po3risiHyTO 11Ba BapiaHTH IUTUTH: CUMETPHYHY i HECHMETPHUHY. [IUTa BBaXKAETHCS CHMETPUYHOIO, SIKIIO BOHA
3a7I0BOJIbHSIE YMOBH CHMETPUYHOCTI KOHTYPY IUIMTH i KpaflOBHX YMOB, a TaKOX YMOBH CHMETPHYHOCTI 30BHIITHHOTO
HaBaHTa)XKEHHS 1 MEXaHIYHUX BIACTUBOCTEH. SIKII0 X0Ua O 0/1HA 3 IMX YMOB HE BUKOHYETHCS — IUTUTA € HECUMETPHIHOIO.

JInist CUMETpUYHOI TUTUTH PE3yJIbTaTH MPECTABICHO Y BUMNISAAL rpadikiB, MOOYI0BaHUX y NEHTPATIBHUX 1 KPaoBHX
nepepizax IUMTH. Pe3ynbTaT MOPIBHSHO 3 pe3yibTaTaMH, OTPUMaHMMHU 3a gonomororo nakety ABAQUS y Burmsmi

IIPOCTOPOBUX Ipadikib.

YcTaHOBICHO, MO Ui KiHEMAaTHMYHAX KpPaHOBHX YMOB aHANITHYHI PE3yJbTaTH, OTPHMAaHI 3alpOIIOHOBAHUM
MeToJOM i MeTonoM cKiHueHHHX eneMeHTiB (ABAQUS), mpakTtuuHO 306iraioThcs, HaTOMICTh CIIOCTEPIraeTbhesl CyITEBA

PO30DKHICT Pe3yabTaTIB ISl CTATHYHUX KPaHOBUX YMOB.

Jln1sl HecUMETPUYHUX IUINT Pe3yIbTaTH IPeJCTaBIeH] y BUIVIAAI KOHTYPHHX rpadikiB M0 BCbOMY 00’ €My IUIUTH.
Kawuogi ciioBa: MaTeMaTHYHA MOJICITb, TOHKI 130TPOITHI MJIACTHHU, aBTOMATHYHA JU(EpeHITiaIlis.

Introduction. Modern development of com-
puter technology demands construction of new design
models of plate structure. These models can be
divided into two groups: analytical and numerical
ones. Analytical models are described by partial
differential equations. As a result, solution of the
structure within the analytical model caused
development of various analytical methods.

The analytical methods [5; 13-15; 19] are more
exact as compared to numerical ones but their
possibilities are constrained to plate structure and
limited by simple contours.

The base of numerical methods is functional of
proper potential energy. Numerical methods [10-12;
16; 20] are less exact but they allow to solve the
structure of arbitrary configuration where the
analytical methods are impossible but at the expense
of a significant increasing the number of unknowns. It

increases the time for calculations and leads to
accumulation of computational errors.
Many methods which are free from

disadvantages of standard numerical ones have been
suggested in recent years. They create a separate
group called analytical-numerical methods [7; 8; 17].

According to these methods, a part of equations is
performed analytically and others with help of
numerical procedures. The separate group takes
meshless methods [4; 9; 18]. The method suggested
in present paper belongs to this group.

Materials and Methods. Let us consider thin
isotropic rectangular plate (Fig.1) which has
thickness h and plane sizes 2as, s = 1, 2. Plate is
referred to right-handed Cartesian coordinate system
Oxyx, originated at its geometrical center and
constrained by contour C.

Outer load of intensity (x1, x;) is applied to
upper surface of the plate while its bottom surface is
unloaded.

The base of analysis of the thin plate structure
is made by the Kirchhoff theory. It is the approximate
theory of zero order of deformation. But in many
cases, the Kirchhoff theory gives satisfactory results
with sufficient accuracy for the practical purpose and
correctly describes behavior of the structure.

Solution of thin isotropic plates within the
Kirchhoff theory is equivalent to solution of non-
uniform fourth order partial differential equation
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V2V2 W = % 1)
for given boundary conditions. Equation (1) is an
equilibrium equation written in term of displacement.
In the above function (xy, x,), there is the deflection
of the plate and D its flexural rigidity. The function
(x1, x,) describes distribution of the outer active load
on upper surface of the plate.
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Fig. 1. Rectangular plate
Solution of the equation (1) is presented as a
sum
w=w,+ w, 2
of general solution w0 of the Equation (3)
VZViw = 0 ?3)

and some particular solution of the Equation (1).
To solve the Equation (3) we take the form
Wo = fips Xs * Thp 3-s (X3-5) 4)
where fi,s (x5) are unknown functions; Ty (x,) are
given trigonometric ones:
cos kypsxs ,p=1,2,

T , = 5
kps X1, X2 sin (kips 2.),p = 3,4, 5)
and
_ Yiks: P = 1! 3:

kkps - 6ks'p — 2, 4. (6)

Parameters y;, 0y, are calculated as

k 2k-1

Yiks = a_t; Os = 2a, u (7)

Intheabovep=1, ...,4,s=1, 2, k is number
of single approximation, where k=1, ..., Kand K is
several approximations of the solution and determines
its accuracy. The K is greater the accuracy of the
solution is better.

The Einstein summation rule is used here.
According to this convention indices repeated twice
in a single term imply the summation is to be done.
Summation indices in formula (4) are k, p and s.

The functions fi,s (xs) including in formula
(4) are taken in the following form

fkps Xs = RkpsEkps (xs), (8)

where Ry,s are unknown coefficients. Because
indices k, p, s appear at the both sides of this formula,
summation does not perform according to these
indices.

We except the functions Ej,s (x,) as

Ekps Xs =€exp (Akpsxs)! 9)
where ;s are unknown parameters.

Substituting expressions (4), (8), (9) into
equation (3) we come to the system of characteristic
equations of the fourth order with respect to the
parameters Ay,s

Azps - Zklip 3-s Aips + klip 3-s 0. (10)

The parameters ks included in the equation
(10) are determined with help of parameters of
trigonometric functions (6).

Let’s Aypsy, V=1, ..., 4 be roots of equations

(10).
Finally, the functions (8) takes the form [4; 5]
fkps Xs = Rkpsv ’ kasv (xs)- (11)
In the above functions
cosh kgpz—s x5, v=1
Z—Zsinh Kip 3—s Xs , V=2
kasv = (12)

sinh Kgpz—s Xs, v=3
Z—icosh kkp 3—5 X5, V=4
are called the basic functions of the solution. Using
the obtained relations, we present solution of the
equation (3) in following compact form

Wo X1,X2 = Wipsy X1,X2 * Ripsy (13)

In particularcase p=1,2,s=1,2,v=1,2 we
obtain symmetric model of the plate presented in the
paper [5]. The introduced functions

Wkpsu X1,X2 =
= kasv Xs * Tkp 3-s (X3-5) (14)
are dependent on the solution of the problem and they
are called shape functions of the plate deflection. The
unknown coefficients Ry, are determined from
boundary conditions at the plate contour.

The next substituting formula (13) into
expression (2) we obtain general solution of non-
uniform equation (1)

W X1,X2 = Rppsy * Wipsy X1,%2 +

+ VV* (x1:x2)r (15)
where W, x1,x, = w, (x,x,) is its particular
solution. It can be presented as

W, x,x, = Cmnpq : Wmnpq (x1,x2). (16)

The functions W, (%1, ;) are dependent on
outer load and called force functions of the plate
deflection. For each specific problem they can be
obtained using special procedures. In the present
paper they have been taken in the form

Winnpqg X1,X2 =

mp1 X1 ° anz X2,
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=pq=1,..,4 a7
The unknown parameters Cpp,g Must be

determined separately. Expressions for tangent
displacements uy(x1, x2), ua(x1, x2), moments Myq(x1,
Xz), Mgz(xl, Xz), Mlg(xl, Xz), Shearing forces Ql(xl,
X5), Q2(x1, xp) and generalized shearing forces V(xy,
X,), Va(x1, x,) were obtained by differentiating the
expressions (14), (17).

In the author’s computer program, the
automatic differentiation (AD) is used [1-3].

The obtained expressions are presented in
general form

F x1,%3 = Rypsy " Frpsy X1,%2 +

+ F; (x1:x2): (18)

where function F (x;, x,) is vector of functions F =
(U, V,X,Y, Z,...). Next designations

w o <P1U <P2V M1)1( Mz}z/

W’ - ) - ) - ) - ) (19)
M, Q1 Q2 Vi v,

-Z, -G, - H, - K, - L.

are introduced here. It is seen that expressions (18)
have the same structure. Functions Uysy, Vipsy and
so on are partial derivatives of shape functions W,,,.
They are called functions of shape of displacements,
moments, shearing forces and generalized shearing
forces.

Similarly, the functions U,, V,, etc. are partial
derivatives of force functions W, and they are called
force functions of tangential displacements, moments
and shearing forces.

The introduced expression (15), (18) are called
functions of the state of displacements and stresses.
Their set creates the design model of a plate.

Since the expression (15) is solution of the
equation (1) of the internal forces in the plate be
balanced with outer load applied to its upper surface.
But the expressions (15), (18) are undetermined
because they are dependent on arbitrary parameters
Rypsy Which can be treated as degrees of freedom of
the plate. Their number for given approximation K is

i =K psv. (20)

In order to stable of the plate the links in the
form of boundary conditions must be imposed at its
contour. The presented structure (15), (18) of solution
allows easily to simulate various boundary conditions
written in the separate points at the plate contour.

The total number of such conditions must be
equal to number of parameters Ry, (20). Each
condition corresponds to one parameter. Because p =
4, s =2, v =4 we can write 32K boundary conditions
at the plate contour. Since at each points two
boundary conditions are written there must be put

16K nodes at the plate contour. Unknown coefficients
Rypsy are determined satisfying these boundary
conditions at the considered nodes.

Generation of current nodes. The consider
rectangular plate in the Figure (1) has eight stable
points at the contour which are called stationary
nodes. They are midpoints O; and corner points
Ni,i=1,...,4.

We introduce two sets X; = x;,, and
X, = xy, ofpoints xi,,,x,, with numbers (m, n)
uniformly placed at the axes of the plate within the

intervals  X; € —a;,0 U 0,a;,j=1,2and call
them initial points. Points  inf xy, = X1 =
= —Qp,Sup Xym = X = a;  and inf xp, =
= Xp1 = —Qp,SUP Xpp = Xpy = ap are limiting
points.

Next, the author projects the initial points onto
contour C. Each point generates only one node at the
separate edge of the plate. It is evident that each edge
will contain nodes generated only by either set X; or
set X,. From this reason it is not possible that two
initial point of set X; and X, fall into one node at the
edge. It means that there are unequivocal functional
dependence between set of initial points and their
projections onto contour of the plate.

The obtained projections are called current
nodes. Nodes generated by set of points X; onto
horizontal edges we designate K,m, r = 2,4 and nodes
placed on vertical edges as Ly, r = 1,3. Here r is the
number of the edge and m, n are numbers of initial
points in corresponding sets.

Next we go to analysis of the corners points in
the plate. Since all corners are the same, it is
sufficient to do analysis one of them, say corner N;.
We consider limit when element x,,, of the set
X, = x4y tends to limiting point xq,, = a;. If
X1m — a; sequence of current nodes K,
approaches to corner Ni. Such limit exists always
because according to the assumption limiting point a;
exists. We designate it as K,3. Here first index means
number of the edge and second index corresponds to
corner number. We have

lim

X1moa, Kom = Kas. (21)
Node K,5 is called limiting node at Edge 2 in

corner N3. Similarly, we define node at Edge 3.
limeHaZ Ly = L. (22)
Union of these nodes is called a simple corner

node and designated it

S; = Ky3 U Las. (23)
Although the obtained limiting nodes have the
same coordinates K,3 a;,a, , L,3 a;,a, they are
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different ones K,3 # L33 because lie at different
edges of the normals n2 and n3. A rectangular plate
has four simple corner nodes. Union of current and
limiting nodes we called edge nodes. At each edge
node two boundary conditions are written.

Let us note that described procedure of
generation of edge nodes and their distribution at the
plate contour is fulfilled with help of Author’s
program.

Now we calculate the number of initial points
assuring given K accuracy of solution. According to
(20) we have 16K edge nodes in approximation K
uniformly distributed at the contour including limiting
nodes. Half of them (8K) must be placed at horizontal
edges and others at vertical ones. Since each initial
point generates two current nodes at the opposite
edges thus 4K points must be introduce at the axes
Ox; and 4K points at the axes Oxp,. This in K
approximation 8K initial points must be chosen.

In order to obtain a particular solution
w, x,x, = W, (x,x,) we present outer load
q (x4, x,) in the form of double trigonometric series

qa Xu,X2 = Qmnpq - Tmnpq (x1,%2), (24)
where  Tpupq (X1,x2) are double trigonometric
functions of the form

Tmnpq XXz = Tmpl X1 - anz X2

mn=123,..; p,gq=1,..,4. (25)

For rectangular plates parameters ¢,,,,,, can be
determined as coefficients of expansion of the outer
load in Fourier series on the surface of the plate.

Correspondingly to this force functions W,
are taken in the same form

Wmnpq Xu,X2 = Tmpl X1 - anz X2

pg=1,..,4 (26)

Next we substitute these expressions into
Equation (1). Taking into account relations (24) and
equating coefficients at the same expressions in the

both sides of Equation (1) we find coefficients C,,;pq
(16) expressed over outer load (24).

Solution of the problem. The loaded functions
were taken as particular case of general function (24)
for m=n=1;p=q=2. Wehave

q X1,X; = qr122 * T1122 (X1, %2). (27)
Correspondingly, a particular solution of
equation (1) takes the form
W, X1,X5 = W, x,x5 =
= Cy122 - Wigzz (X1, X3). (28)
Let us introduce the designations:
G122 = qo» Ci122=C (29)
and obtain
q x1,X; = qo * Ti122 (X1, %2), (30)
W, X1,Xy = W, x1,xp =
= C - Wigpp (x1,%3). (31)

Next we substitute expressions (30), (31) into
equation (1). After differentiation and gathering
similar expressions we find constant C.

q
C= ooy (32)

Here qo is intensity of outer load and D is
bending rigidity of the plate. Finally, a particular
solution of equation (1) takes the form

W, X1,X; =C -cos ;1 x; *cos 8;,x, =
(33)

The problem has been solved in third appro-
ximation (K 3) using 12 initial points.
Consequently, we have 24 edge nodes. The
performed calculations have shown that increasing
the K value for no longer affects the accuracy of the
solution. It means that an exact solution is already
obtained for small K. This confirms the high
effectiveness of this method.

The results were obtained using a Python-
based computer program by implementing the
considered mathematical model [6].

T T
=C -coS — x; - COS — X,
2a, 2a,

Q- - - - - - -~ [ r-—- - - - - -~ ] r-- - - - - -7~
| Xy I | X5 I | Xo
s| T s s T s s [ e
( | | | |
« ’ F (o
(a) SSSC (b) SSSF (¢) SSCC
¢ js s
| [ |
| X, | | X X,
s| B s s By fo c e Je
| | |
F ¢ F
(d) SCSF (e) SCCC () CCCF
Fig. 2. Kinds of links of edges of plates
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Table
Cases of boundary conditions of considered plates
Case Boundary conditions Function Case Boundary conditions Function
SSSC w(X1,X2) x=—q, =0 W SCSF w(Xy,X2) xy=—a, =0 W
My (X1, %2) xy=—q, =0 X My (X1, X2) xy=—q, =0 X
w(Xq, X2) x,=a, =0 W w(Xq, X2) x,=a, =0 W
My, (X1, %2) xy=a, =10 Y 02(x1,%2) xp=a, =0 Vv
WXy, X2) x,=a, =0 w W(X1, X2) x,=a, =0 W
My (X1, %) x,=q, =0 X My (X1, %2) x,=q, =0 X
W(X1,X2) xp=—q, =10 w My, (X1, X2) xy=—q, =0 Y
02(X1,%2) xy=—aq, =0 \4 Vo(x1,%2) xy=—a, =0 L
SSSF WXy, X2) x=—aq, =0 W SCCC w(X,X2) xy=—aq, =0 W
My (X1, X2) xy=—q, =0 X My (X1, X2) xy=—q, =0 X
w(X1, X2) x,=a, =0 W w(Xq, X2) x,=a, =0 W
My, (X1, %2) xy=a, =0 Y P2(x1,%2) xp=a, =0 Vv
WXy, X2) x,=a, =0 w WXy, X2) x,=a, =0 W
My; (X1,%3) xy=a, =0 X ©1(X1,X2) x=a, =0 U
My, (X1, X2) xy=—a, =0 Y WX, X2) xp=-aq, =0 W
Vo(x1,%3) xy=—a, =0 L ©2(X1,X%3) xy=—a, =0 \Y
SSCC WXy, X2) x=—aq, =0 W CCCF w(Xy,X2) x,=—aq, =0 W
My (X1, X2) xy=—q, =0 X O(X1,X2) xy=—aq, =0 U
w (X1, X2) x,=a, =0 W WXy, X2) x,=a, =0 W
My, (X1, %2) xy=a, =0 Y P2(x1,%2) xp=a, =0 Vv
WXy, X2) x,=a, =0 W W(X1, X2) x,=a, =0 W
011, %2) x=a; =0 u ©1(x1,%2) x=a; =10 u
WXy, X2) xp=—aq, =0 W My, (X1, X2) xy=—a, =0 Y
©2(x1,%2) xy=—a, =0 V Vo (X1, X2) xy=—a, =0 L

Results. Similar to J. Reddy [13, 14], we will
write notation boundary conditions at the edges of a
rectangular plate using symbols CFSC, FFCC and so
on.We begin definition of the boundary conditions from
the left vertical clockwise. The next designations of the
plate edge are introduced here: S — edge is simply
supported, C — edge is clamped and F — edge is free.
Among the solved examples, there are solutions of 6 of

10

them: SSSC, SSSF, SSCC, SCSF, SCCC, CCCF. In the
process of modeling of the structure, the following
boundary conditions were imposed.

Following the geometric and mechanical
parameters being taken in calculations: intensity of
the load qo = 10 kPa, plate sizes 2a; =8 m, 2a, =4 m,
thickness h = 0.2 m. Young’s modulus is equal to
E =30 x 10° Pa and Poisson ratio v = 0.2.
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3.1. Examples
3.1.1. Plate SSSC
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0.00030 0.8 0.00005
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e —0.00015
0.00006 e
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(b) Function ¢,
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(c) Function ¢»
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3.1.3. Plate SSCC
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3.1.6. Plate CCCF
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Conclusions. The major findings of this
research are summarized in the following:

1. The design model of thin isotropic plates
under non-symmetrical boundary conditions is
constructed. The most important elements of the
model are: basic functions, functions of state of
displacements and stresses in the plate, shape
functions and force ones, edge node and surface ones,
loading functions.

2. Within the model effective analytical-
numerical method to solution of plate structure have
been suggested. In contrary to FEM, the presented
method is based on continuum model of material. For
this reason, the operations like the structure
discretization and finite element aggregation are
unnecessary. It is characterized by simplicity of the
structure modeling; possibility to define static,
kinematic and mixed boundary conditions; high
accuracy and efficiency of calculation; meshless
approach for solving the problem.

The method allows:

* to obtain an exact general solution of
equilibrium equation. A particular solution is
obtained with high accuracy in the separate surface
nodes,

* to generate set of the initial points at the
coordinate axis and to distribute them at the plate
contour,

* to write boundary conditions at each edge
nodes. The number of them always corresponds to the
number of unknown parameters of the model.

Displacements, slopes, moments and shearing
forces are obtained by using the method of automatic
differentiation. All operations are performed
automatically with the author’s program.

Effectiveness of the method is illustrated by the
examples of rectangular plates with various non-
symmetrical boundary conditions. The best results are
obtained for an uniform distribution of edge nodes.
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