Increasing of cultivator paws wear resistance by modification by hydrogen-free nitriding in glow discharge
DOI:
https://doi.org/10.31734/agroengineering2020.24.109Keywords:
hydrogen-free nitriding in glow discharge (HNGD), wear resistance, abrasive wearabilityAbstract
In the article the problem of increasing wear resistance of the tillage tool - Tiger-Mate 200 cultivator paws is considered. To increase the wear resistance of the cultivator paws by hydrogen-free nitriding in a glow discharge (HNGD) as a method of modifying the surface layer of the paw was used. The research was performed in two stages. At the first stage, cylindrical samples with the diameter of 5 mm and length 20 mm made of paw material were investigated in terms of wear resistance by means of the universal friction machine 2168 UFM in order to optimize the technological parameters of HNGD, which were subsequently applied for modification of the cultivator paws. To determine optimal parameters of the HNGD, the researchers changed: the percentage of the gas mixture components (nitrogen – argon); saturation process temperature; the pressure of the gas mixture in the discharge chamber and saturation process duration. In the course of the research, the surface hardness of the samples and its distribution along the depth of the microsection were determined; X-ray structural analysis of the diffused layer made it possible to identify the influence of the structural components of nitrided layer on tribological parameters of constructional steels in conditions of abrasive wearability.The influence of the technological modes of nitriding (temperature T; pressure p; composition of gas mixture C; and time of nitriding t) on the thickness of the nitride zone and the nitrided layer as well as the microhardness distribution along the thickness of the surface reinforced layer were analyzed. The optimal technological modes of HNGD for strengthening the cultivator paws by the maximum abrasive wear resistance criterion were found. It has resulted in the increase of the service life of modified paws by 1.4 – 1.5 times.
References
Denysenko, M. І., & Voitiuk, V. D. (2016). Zmіtsnennia lez hruntoobrobnikh robochykh orhanіv sіlskohospodarskykh mashyn z utvorenniam efektu samozahostriuvannia. Tekhnіchnyi servіs ahropromyslovoho, lіsovoho ta transportnoho kompleksіv, 6, 175–182.
Borak, K. V. (2015). Pіdvyshchennia nadіinostі robochykh orhanіv hruntoobrobnykh mashyn. Vіsnyk Kharkіvskoho natsіonalnoho tekhnіchnoho unіversitetu sіlskoho hospodarstva іmenі Petra Vasylenka, 163, 120–125.
Volkov, Yu. V., Volkova, Z. A., & Kaigorodcev, L. M. (1994). Dolgovechnost mashin rabotaiushchikh v abrazivnoi srede. Moskva : Mashinostroenie.
Aulіn, V.V., Bobrytskyi, V. M., & Tykhyi, A. A. (2010). Teoretychnі osnovy samozahostriuvannia, mіtstnostі і znoshuvannia rіzalnykh elementіv ROGM ta napriamky pіdvyshchennia yikh dovhovіchnostі. Vіsnyk іnzhenernoi akademіi Ukrainy, 1, 149–154.
Bobrytskyi, V. M. (2007). Pіdvyshchennia znosostіikostі rіzalnykh elementіv robochykh orhanіv hruntoobrobnykh mashyn: avtoref. dis. … kand. tekh. nauk: Kyiv.
Shkrehal, O. M. (2013). Pіdvyshchennia dovhovіchnostі robochykh orhanіv kultyvatorіv. Vіsnyk HNTUSG. Problemy nadіinostі mashyn ta zasobіv mekhanіzatsii sіlskohospodarskoho vyrobnytstva, 139, 168–173.
Stechyshyn, M. S., Lukianiuk, M. V., Oleksandrenko V. P., & Lukianiuk M. M. (2019). Rozrobka і doslіdzhennia nyzkotemperaturnykh hazorozriadnykh tekhnolohii u Podіlskomu naukovomu fіzyko-tekhnolohіchnomu tsentrі. Vіsnyk HNU, 3, 6–12.
Skyba, M. Ye. et al. (2020). Wear resistance and physicochemical properties of 12XH3A carbohydrate. International Scientific Journal Problems of tribology, 1/95, 6–15.
Lakhtіn, Yu. M., & Kohan, Ya. D. (1992). Struktura i prochnost azotirovanykh splavov. Moskva: Metallurgiya.
Kaplun, V. G., & Kaplun, P. V. (2015). Ionnoe azotirovanie v bezvodorodnykh sredakh: monohrafiia. Hmelnitskii.
Pastukh, I. M. (2006). Teoriia i praktika bezvodorodnoho azotirovaniia v tleiushchem razriade. Kharkov: NNC HFTI.
Stechyshyn, M. S., Martynyuk, A. V., Bilyk, Y. M., Oleksandrenko, V. P., & Stechyshyna, N. M. (2017). Influence of the Ionic Nitriding of Steels in Glow Discharge on the Structure and Properties of the Coatings. Materials Science, 53 (3), 343–349.
Stechyshyn, M. S., Stechyshyna, N. M., & Kurskoi, V. S. (2018). Corrosion and Electrochemical Characteristics of the Metal Surfaces (Nitrided in Glow Discharge) in Model Acid MediaMarch. Materials Science, 53(5), 724–731.
Stechyshyn, M. S., Stechyshyna, N. M., Martynyuk, A. V., & Luk’yanyuk, M. M. (2018). Strength and Plasticity of the Surface Layers of Metals Nitrided in Glow Discharge. Materials Science: Springer (USA), 54 (5), 55–60.
Stechyshyn, M. S., Skyba, M. E., Sukhenko Yu. G., & Tsepenyuk, M. I. (2019). Fatigue Strength of Nitrided Steels in Corrosion-Active Media of the Food Enterprises. Materials Science, 55(1), 136–141.
Stechyshyn, M.S., Skyba, M. E., Stechyshyna, N. M., Martynyuk, A. V., Mardarevych, R. S. (2020). Physicochemical Properties of the Surface Layers of 40Kh Steel After Hydrogen-Free Nitriding in Glow Discharge. Materials Science, 55(6), 892–898.