Results of the experimental research of agrobiological characteristics of root crops
DOI:
https://doi.org/10.31734/agroengineering2020.24.013Keywords:
fodder, sugar, table beets, carrot, chicory, mass of sticky soil, the thickness of the soil layer, soil moistureAbstract
The efficiency of cutting the bud, digging and cleaning of roots from impurities depends not only on the design and parameters of working bodies of the root harvesting machine, but also on the agrobiological and physico-mechanical characteristics of roots during harvesting. The choice of design of the working bodies and adjustment of parameters and modes of operation of the main working technological modules, or the module for cutting of a hyphen, digging and clearing modules of self-propelled root harvesters are regulated by dimensional parameters and the form of root crops and physical and mechanical condition of amniotic soil environment. The purpose of the work is to make further improvement of the methods and techniques of optimization of the structural and kinematic parameters and modes of operation of the working bodies of transport and technological systems and modules of root harvesting machines. The article presents results of the field experimental studies of the mass and thickness of the layer of sticky soil on the body surface of dug fodder roots, sugar, table beets, carrots and chicory roots depending on their agrobiological characteristics (root diameter, root length, root depth and physical root environment soil condition (soil moisture). The roots were dug by the working bodies of the combined digger, which consisted of a one-sided spherical disk, a drive shaft with cleaning elements, and a loosening device. It is established that the mass of sticky soil varies from 10… 210 g for fodder beets, 50… 250 g for sugar beets, up to 90 g for table beets, up to 70 g for carrots, 20… 360 g for chicory roots.
References
Baranovskyi, V. M., Voitiuk, D. H., & Vyhovskyi, A. Yu. (2004). Analitychni doslidzhennia masy nalyploho hruntu na poverkhni tila vykopanykh koreneplodiv. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3, 9–12.
Baranovskyi, V. M., Voitiuk, D. H., Kropyvko, S. V., & Vyhovskyi, A. Yu. (2003). Prohnozuvannia kilkosti hruntu na poverkhni tila koreneplodu. MOTROL, 6, 164–172.
Baranovskyi, V. M., & Herasymchuk, H. A. (2009). Kryterii otsinky tekhnolohichnoi efektyvnosti protsesu vykopuvannia koreneplodiv. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia, 14, 163–168.
Baranovskyi, V. M., & Hukov, Ya. S. (2007). Modeliuvannia masy nalyploho hruntu na poverkhni prostorovoho tila. Silskohospodarski mashyny, 16, 52–62.
Baranovskyi, V. M. (2005). Doslidzhennia tovshchyny sharu nalyploho hruntu na poverkhni til koreneplodiv. Visnyk TDTU, 10(4), 63–68.
Baranovskyi, V. M., Dubchak, N. A., Onyshchenko, V. B., & Pankiv, M. R. (2008). Matematychni modeli masy nalyploho hruntu na koreneplodakh kormovykh buriakiv. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia, 12(2), 314–326.
Baranovskyi, V. M. (2005). Konstruktyvno-tekhnolohichni pryntsypy adaptyzatsii transportno-ochysnoho kombinovanoho robochoho orhana korenezbyralnykh mashyn. Silskohospodarski mashyny, 13, 18–24.
Baranovskyi, V. M. (2005). Konstruktyvno-tekhnolohichni pryntsypy zastosuvannia adaptyvnoho vykopuvalnoho robochoho orhanu korenezbyralnykh mashyn. Naukovyi visnyk NAU, 73(1), 249–255.
Baranovskyi, V. M. (2006). Matematychna model masy nalyploho hruntu na poverkhni tila koreneplodiv. Naukovyi visnyk NAU, 95(2), 203–211.
Baranovskyi, V., Pankiv, M., & Pidhurskyi, M. (2018). Tekhnolohichni aspekty rozrobky moduliv transportno-tekhnolohichnykh system korenezbyralnykh mashyn. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia, 22, 65–76.
Baranovskyi, V. M., Pankiv, M. R., Tesliuk, V. V., & Onyshchenko, V. B. (2017). Rezultaty eksperymentalnykh doslidzhen koefitsiienta prokhodzhennia koreneplodiv. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia, 21, 58–69.
Baranovskyi, V. M., & Ramsh, V. Yu. (2008). Optymizatsiini matematychni modeli protsesu vykopuvannia vorokhu koreneplodiv pasyvnym sferychnym dyskom. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia, 12(2), 337–349.
Baranovskyi, V. M. (2008). Rezultaty teoretychno-eksperymentalnykh doslidzhen sekundnoi podachi vorokhu koreneplodiv. Mekhanizatsiia silskohospodarskoho vyrobnytstva, 1, 111–120.
Baranovskyi, V. M. (2013). Transportno-tekhnolohichni systemy ochysnykh robochykh orhaniv adaptovanoi korenezbyralnoi mashyny. Silskohospodarski mashyny, 24, 18–29.
Hurchenko, O. P., & Baranovskyi, V. M. (1995). Rezultaty vyprobuvannia modernizovanoi korenezbyralnoi mashyny MKK-6A. Mekhanizatsiia ta elektryfikatsiia silskoho hospodarstva, 81, 57–60.
Pogorelyi, L.V., & Tatianko, M.V. (2004). Sveklouborochnye mashiny: istorija, konstrukcija, teorija, prognoz. Kiev: Feniks.
Ramsh, V. Yu., Baranovskyi, V. M., Pankiv, M. R., & Herasymchuk, H. A. (2011). Analiz tendentsii rozvytku robochykh orhaniv dlia separatsii vorokhu koreneplodiv. Naukovi notatky, 31, 298–305.
Baranovskyi, V., Pankiv, M., & Dubchak, N. (2017). Experimental research of stripping the leaves from root crops. Acta Technologica Agriculturae, 20(3), 69–73.
Baranovskyi, V. M., & Potapenko, M. V. (2017). Theoretical analysis of the technological feed of lifted root crops. INMATEH–Agricultural Engineering, 5(1(1)), 29–38.
Baranovskyi, V., Truchanska, O., Pankiv, M., & Bandura, V. (2020). Research of a contact impact of a root crop with a screw auger. Research in Agricultural Engineering, 66, 33–42.
Hevko, R. B., Tkachenko, R. I., Synii, S. V., & Flonts, I. V. (2016). Development of design and investigation of operation processes of small-sclale root crop and potato harvesters. INMATEH–Agricultural engineering, 49(2), 53–60.
Pankiv, M. R. (2019). Mathematical model of the process of interaction of cleaning elements with the biggest soil on roots. Innovative solutions in modern science, 9(36), 50–60.